MILFORD, MI – A new materials strategy will save $2 billion annually in product development costs, General Motors Executive Vice President Mark Reuss says, cash the automaker plans to sink into future mobility modes such as battery-electric, hydrogen fuel-cell electric and autonomous vehicles.

“Not only are we saving billions, we have a robust plan to reinvest that savings in the future of the company,” GM’s product development chief tells Wall Street analysts at the automaker’s proving grounds here.

Mass reduction in places customers do not see or feel plays a key role in the strategy, Reuss says. Lighter vehicles are more fuel efficient and the mass savings pave the way for adding technologies such as battery propulsion and autonomous-driving hardware in the future, he adds.

Reuss points to the ’16 Chevrolet Malibu as one example. The redesigned sedan shed 300 lbs. (136 kg) off its predecessor, but is longer and roomier. The Malibu’s fuel economy improves 8% to a peak 48 mpg (4.9 L/100 km) on a battery-backed hybrid model and its per-unit profitability in the U.S. will go up $1,500.

The redesigned ’16 Chevy Volt sheds 250 lbs. (113kg) to help grow its all-electric range 40%, and per-unit profitability rises $3,500. The redesigned ’16 Chevy Cruze and Camaro also enjoy weight savings, fuel-economy gains and profitability improvements.

A mix of materials contributes to the mass reductions, Reuss says, pointing specifically to various steels, aluminum and composites. He says GM has used the materials in a variety of combinations over the last two years relying on a patented spot-welding approach.

An all-new resistance spot-welding process for aluminum from GM will soon allow the automaker to bond the material to steel, a longtime conundrum to using the two together. Reuss calls it a breakthrough in material manufacturing. GM will introduce the process at its Detroit-Hamtramck, MI, assembly plant on the all-new ’16 Cadillac CT6 this spring.

“We are leading the world in the ability to spot weld steel to steel, aluminum to aluminum and aluminum to steel,” Reuss says. The joining technique, he adds, allows GM to employ “precisely the correct material at precisely the right location.”

The CT6, for example, uses 11 different materials in its body. The strategy also allows the automaker to use just two parts to form a front inner pillar on the luxury sedan, whereas the ATS compact sports car introduced two years ago relied on 25 parts for the same component.

“It reduces complexity, it reduces mass and it reduces our tooling investment,” Reuss says.